
Evaluation and Benchmarking of Singularity MPI
Containers on EU Research e-Infrastructures

Vı́ctor Sande Veiga∗, Manuel Simon†, Abdulrahman Azab‡, Giuseppa Muscianisi§, Carlos Fernandez¶, Giuseppe
Fiameni§ and Simone Marocchi§

∗CIMNE - International Centre for Numerical Methods in Engineering, Spain
†Nokia, France

‡Division of Research Computing, University Center for Information Technology, University of Oslo, Norway
§CINECA - Interuniversity Consortium, Italy

¶CESGA - Centro de Supercomputación de Galicia, Spain
Email: ∗vsande@cimne.upc.edu, †eu@manuel.gal, ‡azab@usit.uio.no,
§{g.muscianisi,g.fiameni,s.marocchi}@cineca.it, ¶carlosf@cesga.es

Abstract—Linux Containers with the build-once run-anywhere
principle have gained huge attention in the research community
where portability and reproducibility are key concerns. Unlike
virtual machines (VMs), containers run the underlying host OS
kernel. The container filesystem can include all necessary non-
default prerequisites to run the container application at unaltered
performance. For this reason, containers are popular in HPC
for use with parallel/MPI applications. Some use cases include
also abstraction layers, e.g. MPI applications require matching
of MPI version between the host and the container, and/or GPU
applications require the underlying GPU drivers to be installed
within the container filesystem. In short, containers can only
abstract what is above the OS kernel, not below. Consequently,
portability is not completely granted.

This paper presents the experience of PRACE (Partnership
for Advanced Computer in Europe) in supporting Singularity
containers on HPC clusters and provides notes about possible
approaches for deploying MPI applications using different use
cases. Performance comparison between bare metal and con-
tainer executions are also provided, showing a negligible overhead
in the container execution.

I. INTRODUCTION

Sharing of software packages is an essential demand among
scientists and researchers in order to reproduce results [1].
HPC centres are struggling to keep up with the rapid ex-
pansion of software tools and libraries. In some cases, large
communities are developing software to serve their specific
scientific community. In many cases, users are interested in
tools that are difficult to install, due to long list of non-
portable dependencies. Some requested software might be
specifically targeted at an OS environment that is common
for their domain but may conflict with the requirements from
another community. For example, the biology and genomics
community adopted Ubuntu as their base OS with a specific
versions of Perl and Python [2].

Traditional software deployment performed in HPC presents
some issues which make it very inflexible. Different ap-
proaches can provide an interesting alternative that is more
flexible with very little impact on performance. Traditional
software deployment and integration consists in performing
all the needed steps, like download, configure, build, test and

install, to have the software project natively in a production
infrastructure. The main goal of the lightweight virtualization
service in PRACE [3] is to provide a platform and best
practices on how to offer various software with good per-
formance and ready to use for end users. Scientific software
is extremely complex from an architectural point of view. It
is usually composed of numerous mathematical concepts and
features implemented along several software components in
order to provide high level abstraction layers. These layers
can be implemented in the software project itself or integrated
via third party libraries or software components. The whole
environment of each scientific software is usually composed of
a complex dependency matrix and, at least, one programming
language and compiler. Isolation and integration of all depen-
dency matrices at HPC clusters are traditionally managed by
environment modules. Environment Modules provide a way
to dynamically change the user environment through module
files. The key advantage of environment modules is that it
allows to use multiple versions of a program or package from
the same account by just loading the proper module file. In
general, module files are created on per application per version
basis. They can be dynamically loaded, unloaded, or switched.
Along with the capability of using multiple versions of the
same software it also can be used to implement site policies re-
garding the access and use of applications. Module files allow
managing the loading and unloading of environments to many
particular applications, but to manage complex work-flows
with environment modules can be sometimes non-affordable,
and requires the re-installation of some tools with compatible
dependencies. These issues are difficult to manage from the
user and the administrator point of view. Finally, the hardware
and software ecosystem of an HPC production infrastructure
is different than a development ecosystem, and usually a lot
of unexpected issues appear while integrating and deploying
the complex environment of mathematical frameworks. To
integrate the whole environment of each software project in a
production infrastructure is usually hard and time consuming.
Also, as this software is evolving very fast and using the
latest technologies and features of the compilers, new versions
are provided very frequently. This puts a lot of pressure on

1

2019 IEEE/ACM Workshop on Containers and New Orchestration Paradigms for Isolated Environments in HPC (CANOPIE-
HPC)

978-1-7281-6028-3/19/$31.00 ©2019 IEEE
DOI 10.1109/CANOPIE-HPC49598.2019.00006

Fig. 1: Native vs Virtual Machines vs Containers

the software support team of the infrastructures. Even though
there are some tools that could help in this process, like
EasyBuild [4], an application to manage software on High
Performance Computing (HPC) systems in an efficient way.
What is intended to do is to find a simple and efficient way
that allow to deploy and integrate that complex software with
its dependencies. The goal is to reduce at maximum at possible
the previously named time consuming. Most importantly,
because end users can come up with endless combinations
of software and dependencies, it is to achieve maximum
portability, but without losing the computational capacity of
the system.

This paper presents a research study proposing general
approaches and configuration for running singularity MPI con-
tainers in an HPC environment. The aim is to obtain portability
and flexibility for this container solution while running parallel
applications, its configuration in the HPC infrastructure and
the realization of multiple performance tests to ensure the
usage of these HPC resources. The performed experiments
and benchmarks have taken place on the MARCONI HPC
cluster in CINECA, Italy [5], and Finis Terrae II HPC cluster
in CESGA, Spain [6]

II. CONTAINERISATION

Linux ”containerization” is an operating system level virtu-
alization technology that offers lightweight virtualization. An
application that runs as a container has its own root file-system,
but shares kernel with the host operating system. Containers
have many advantages over virtual machines (VMs). First,
containers are less resource consuming since there no guest
OS. Second, a container process is visible to the host operating
system, giving the opportunity to system administrators for
monitoring and controlling the behaviour of container pro-
cesses. Linux containers are monitored and managed by a con-
tainer engine which is responsible for initiating, managing, and
allocating containers. Figure 1 depicts structural comparison
between native deployment, VMs, and Linux containers.

Although the containerization techniques is a buzzword
nowadays especially in the Datacenter and Cloud industry, the
idea is quite old. Container or ”chroot” (change root) was a
Linux technology to isolate single processes from each other
without the need of emulating different hardware for them.
Containers are lightweight operating systems within the Host
Operating system that runs them. It uses native instructions on

the core CPU, without the requirement of any VMM (Virtual
Machine Manager). The only limitation is that we have to
use the Host operating systems kernel to use the existing
hardware components, unlike with virtualization, where we
could use different operating systems without any restriction
at the cost of the performance overhead. This is the main target
for this work. We can use different software, libraries and even
different Linux distributions without reinstalling the system.
This makes HPC systems more flexible and easy to use for
scientists and developers. Container technology has become
very popular as it makes application deployment very easy
and efficient. As people move from virtualization to container
technology, many enterprises have adopted software container
for cloud application deployment.

A. HPC container platforms

There is a stiff competition to push different technologies
in the market. To choose the right technology, depending on
the purpose, it is important to understand what each of them
stands for and does.

1) Docker [7]: Is the most popular container platform,
and is the standard for the micro-service deployment model.
Docker is more suitable for service-like processes rather than
job-like ones and is not designed for running HPC distributed
applications. The platform relies on the Docker engine and
daemon to be installed and running on each node. Each
container has its own process which is fired up by the docker
daemon. Containers run by default as root. While this can be
avoided by using user namespaces, getting access to the main
docker command, users can easily escape this limitation,
which introduces a security risk. Further more, each docker
engine has its own image repository that, so far, cannot be
shared with other docker engines. This means that running a
parallel application X on e.g. 100 nodes, a X docker image
need to be replicated 100 times, one per node. Docker so far
has no support for MPI.

2) Shifter [2]: is a platform to run Docker containers
that is developed by the National Energy Research Scientific
Computing Center (NERSC) and is deployed in production
on a Slurm cluster of Cray supercomputers. Shifter uses its
own image format to which both Docker images and VMs are
converted. The Docker engine is replaced by image manager
for managing the new formated images. Previously NERSC
introduced MyDock [2] which is a wrapper for Docker that
enforces accessing containers as the user. MyDock however
did not provide a solution for enforcing the inclusion of a
running container in the cgroups associated with the Slurm
job. In addition, both shifter and myDock enforces accessing as
the user by first running as root and mounting /etc/passwd
and /etc/group in each single container, then lets the user
access the container as him/herself. Despite the fact that Shifter
has proven to be useful managing HPC workflows, to use
images in shifter, usesers must submit their images to a root
controlled image gateway via a RESTful API. In addition,
shifter is not currently well maintained.

3) Charliecloud [8]: is an open source project which is
based on a user-defined software stack (UDSS). It is designed

2

to manage and run docker based containers, and One impor-
tant advantage that it is very lightweight. It enables running
containers as the user, by implementing user namespaces.
The main disadvantage is the requirement of a recent kernel
(4.4 is recommended) that supports user namespaces. Many
EU HPC clusters still have their compute nodes with old
kernels (< 3.10), i.e. don’t support user namespaces which
is a showstopper for charliecloud.

4) Podman [9]: is developed and maintained by Red Hat.
It is a lightweight runtime for managing and running docker
containers without the overhead of the docker engine and
daemon. Podman though is not mainly designed for and is
currently lacking support for HPC workloads. Podman can run
rootless, but to to that (similar to charliecloud), it uses user
namespaces (which is a limitation as stated in Section II-A3).
In addition, its rootless mode is not compatible with most
parallel filesystems.

5) Singularity [10]: Singularity is the third and last HPC-
specific container platform (after shifter and charliecloud). It
is developed and maintained by Sylabs Inc. Unlike shifter, it
doesn’t have that complex architecture (with image manager
and gateway) and can be simply installed as a environment
module. Unlike Podman and charliecloud, it does not require
kernel user namespaces to run rootless containers, and thus can
be deployed on old Linux kernels. Singularity supports both
Docker image format and its own native Single Image ”flat”
Format (SIF). Singularity is the most widely deployed con-
tainer platform on HPC systems, currently there are 25,000+
systems running Singularity.

6) uDocker [11]: is a basic user tool to execute simple
Docker containers in user space without requiring root privi-
leges, which enables basic download and sequential execution
of docker containers by non-privileged users in Linux systems.
It can be used to access and execute the content of docker
containers in Linux batch systems and interactive clusters that
are managed by other entities such as grid infrastructures
or externally managed batch or interactive systems. uDocker
and Singularity were developed specifically to be used in
HPC environments, as we will describe below. Both of them
are Docker-compatible, and help to empower end-users of
HPC systems providing a contained location where to manage
their installations and custom software. They are also a great
solution for developers, one of the biggest benefits for them is
to deliver their software in a controlled environment and ready-
to-use. Although the uDocker development team is working
to integrate it with message passing interface libraries (MPI),
unfortunately, it is not yet maturely supported. uDocker is
more of a wrapper than a standalone platform.

B. Container platform choice

Several containerization technologies (like LXC [12],
Docker, Udocker [11] and Singularity [13]) have been tested
in the context of this study, but finally, we decided to go
with singularity. Docker was rejected because of its kernel
requirements and security. Podman and charliecloud were
rejected for their kernel requirements. Finis Terrae II and
many other EU HPC platforms do not have recent kernels

Fig. 2: Singularity work-flow at Finis Terrae II

on compute nodes. uDocker was rejected for the lack of
maturity for its support for MPI. Shifter was rejected due
to the many different components which are needed to work
together in a complex architecture and also for the lack of
maintenance. Singularity was designed focusing on HPC and
allows to leverage the resources of whatever host in which
the software is running. This includes HPC interconnects,
resource managers, file systems, GPUs and/or accelerators, etc.
Singularity was also designed around the notion of extreme
mobility of computing and reproducible science. Singularity
is also used to perform HPC in the cloud on AWS, Google
Cloud, Azure and other cloud providers. This makes it possible
to develop a research work-flow on a laboratory or a laboratory
server, then bundle it to run on a departmental cluster, on a
leadership class supercomputer, or in the cloud. The simple
usage of Singularity allows users to manage the creation of
new containers and also to run parallel applications easily.
Figure 2 describes the installation in FinisTerrae II, users
can pull images or execute containers in FT2 from public
registries, and also import images from tar pipes. Once the
image is created, Singularity allows executing the container in
interactive mode, and test or running any contained application
using batch systems. All the work-flow can be managed by
a normal user at FinisTerrae II, except the build process that
needs to be called by a superuser. We can use a virtual machine
with superuser privileges to modify or adapt an image to the
infrastructure using the Singularity build command.

We can use a virtual machine with superuser privileges
to modify or adapt and image to the infrastructure using
the bootstrap Singularity command. This work-flow allow an
automatized integration and deployment, deriving in a very
flexible and portable solution.

III. CONTAINERIZATION OF PARALLEL MPI
APPLICATIONS

Container technologies can be used to handle portability
issues. The different environments inside the containers can
coexist on the same machine and share the OS kernel, each
running as isolated processes in user space. In what follows, a

3

review about the MPI libraries and network driver installation
within a Singularity container is provided. Performance test
are presented, as a performance comparison among bare metal
and container execution of Quantum Espresso code [14],
showing a negligible difference in the total execution time
growing the number of cores used and using different MPI
libraries and interconnection network. To do this, it is needed
first of all the availability of a Message Passing Interface
(MPI) library inside the container. Moreover, since a HPC
system is usually characterized by having a high-bandwidth
low-latency interconnection among nodes, leveraging Remote
Direct Memory Access (RDMA), the application has to be
aware of such hardware. So, particular drivers and libraries
should be available in the container, enable it to leverage such
network. In this section, informations about the MPI utilization
within a container environment are provided, focusing on Open
MPI [15] and Intel MPI [16]. The OFED libraries have been
available in the container, in order to make it able to run over
an Infiniband network. The particular case of Intel Omni-Path
Architecture is considered.

A. Building notes of a Singularity container

Applications suitable for HPC system use generally parallel
libraries, taking advantage from high-bandwidth and low-
latency interconnection among nodes. To execute a parallel
MPI application within a Singularity container, MPI library
has to be available both in the host cluster and in the
container [17], [13]. The availability of the MPI library in
the container can be achieved installing it from scratch or
binding it from those available in the host system. Standard
implementations of MPI as Open MPI [15] or Intel MPI [16]
can be used, but also less common choices are possible.
Attention has to be paid to possible compatibility issues among
different MPI version in the host and in the container [18]. To
build containers able to connect to networking fabric libraries
in the host, some additional libraries have to be installed. As an
example, if the cluster has an infiniband network, the Open-
Fabrics Enterprise Distribution (OFED) libraries have to be
available into the container. An other technology available for
HPC cluster is the Intel Omni-Path Architecture (OPA), that
offers high performance networking interconnect technology
with low communications latency and high bandwidth charac-
teristics ideally suited for HPC applications. HPC applications
run in containers can take advantage of the improved network
performance of the Intel OPA technology [19], also.

IV. SINGULARITY MPI INTEGRATION

Singularity relies on other libraries (MPI, PMI) to provide
the MPI hybrid approach. To increase MPI containers porta-
bility, the work done from PMIx (OpenPMIx) team [18] is
definitely an important improvement. The hybrid approach
requires that MPI must exist both inside and outside the
container. The Open MPI/Singularity workflow invocation
pathway is as follows:

1) From shell (or resource manager) mpirun gets called
2) mpirun forks and exec orte daemon
3) Orted process creates PMI

4) Orted forks == to the number of process per node
requested

5) Orted children exec to original command passed tom-
pirun (Singularity)

6) Each Singularity execs the command passed inside the
given container

7) Each MPI program links in the dynamic Open MPI
libraries (ldd)

8) OpenMPI libraries continue to open the non-ldd shared
libraries (dlopen)

9) OpenMPI libraries connect back to original orted via
PMI

10) All non-shared memory communication occurs through
the PMI and then to local interfaces (e.g. InfiniBand)

This entire process happens behind the scenes, and from
the user’s perspective running via MPI is as simple as just
calling mpirun on the host as they would normally, but there
are some important considerations to integrate Singularity and
OpenMPI in an HPC environment:

• OpenMPI must be newer of equal to the version inside
the container.

• To support InfiniBand, the container must support it.
• To support PMI, the container must support it.
• Very little (if any) performance penalty has been ob-

served.
To achieve proper containerized OpenMPI support, Open-

MPI version 2.1 should be used. However, Singularity team
explain that there are three caveats:

1) OpenMPI 1.10.x may work but we expect you will need
exactly matching version of PMI and Open MPI on
both host and container (the 2.1 series should relax this
requirement).

2) OpenMPI 2.1.0 has a bug affecting compilation of
libraries for some interfaces (particularly Mellanox in-
terfaces using libmxm are known to fail). If your in this
situation you should use the master branch of Open MPI
rather than the release.

3) Using Open MPI 2.1 does not magically allow your
container to connect to networking fabric libraries in
the host. If your cluster has, for example, an infiniband
network you still need to install OFED libraries into
the container. Alternatively you could bind mount both
Open MPI and networking libraries into the container,
but this could run afoul of glib compatibility issues (its
generally OK if the container glibc is more recent than
the host, but not the other way around).

V. DIFFERENT APPROACHES FOR DEPLOYING MPI
CONTAINERS

Singularity does not magically allow containers to connect
to networking fabric libraries in the host. As the cluster makes
use of an InfiniBand network, it will be needed to install OFED
libraries into the container. So, all the needed libraries will be
installed during the creation process of the containers. That
is, it is important to specify all this software downloading,
installation and configuration into the bootstrap configuration
file. For a clearer and more concise language, from now on,

4

Fig. 3: Mixing different mpirun compilers [20]

whenever we refer to containers with Open MPI inside, we will
do it with the following nomenclature: container ompi/Open
MPI version. E.g. if we are talking about a Ubuntu 16.04.2
LTS (Ubuntu Xenial) container with Open MPI version 1.10.2,
we will just call it: container ompi/1.10.2. In case of Intel MPI,
the nomenclature will be changed to container impi/Intel MPI
version (e.g. container impi/2017). That from the container
side. Changing to the outside values, we already know that the
cluster is a Red Hat Enterprise Linux Server release 6.7, which
have different Open MPI and Intel MPI versions installed. So,
every time we want to talk about an external configuration that
make use of a concrete version of Open MPI or Intel MPI
we will call it host ompi/version or host impi/version. Then,
different approaches are needed in order to arrive at a solution
that allows the use of different versions of MPI libraries inside
and outside the container. We will focus our attention on the
ompi configurations, as it is a more standardized configuration,
but some tests with impi configurations will be done too.

A. Mixing MPI versions

The first approach was the more intuitive and expected. That
is, try a simple application that make use of MPI, mixing
the Open MPI inside and outside the container. For this first
approach, the selected process manager was mpirun. The test
done was the mix of the different ompi possibilities, including
the different available compilers. For these executions, the
obtained results, shown in Figure 3 were a one-to-one version
compatibility, except for 3.0.0. That is, for the properly pro-
gram execution, the version of OpenMPI must match exactly
inside and outside the container for Open MPI less than 3.0.0

B. Install the same OpenMPI version

This is the safest approach, and under it we must match
exactly the same Open MPI version at the host and within the
container. So, if we want to take this approach to production,
OpenMPI versionmust match exactly within the container and
the host.

C. MPI Binding

This approach was made under the srun process man-
ager. A exhaustive study has been done to detect all the
OpenMPI dependencies, all of themlocated at /lib64/ and
/usr/lib64/ at the Finis Terrae II. So, once dependencies

were obtained, we observed them carefully. Then, making use
of the Singularity binding option, we bind the needed host
libraries, forcing the containers to use these selected libraries
instead of their owns. It is quite important to note that simple
binding and replacing the entire directories inside the container
is not the right solution as it supposes a replacement of the
whole low-level library and kernel modules. We need to create
an extra level of indirection with symbolic links to get control
on which libraries will be replaced inside the container. An
extra preparation is needed in this approach. We need to
create the folders where the bindings will be done, because
Singularity will not automatic create them. The binding folders
preparation starts with the creation of a folder hierarchy where
there are included the folders where the bindings will be done
as well as folders which will contain exactly the same content
as the host important libraries.

Looking at the folders hierarchy, we have copied the original
host folders: /lib64, /mpi/lib and /usr/lib64. The
reason why there are two folders inside the /mpi/lib
directory (ompi 1.X and ompi 2.X) it is because several
changes happen when the Open MPI version changed from
1.X to 2.X. One prove of these several changes is reflected
in the backward compatibility loss in the Application Binary
Interface (ABI). The loss of compatibility can be tracked
making use of the ABI tracker tool [21]. Then, when a
important dependency is found, the symbolic link is copied
to the parent folder, that is where the binding is done. As this
approach could result a little confusing to the reader, a graphic
representation was done in order to facilitate the understanding
of it. This graphic representation can be observed on Figure 4.
We have two important blocks: the host and the container,
being this last one hosted by the first one in some folder.
Both of them are Linux-based systems, so they have the
typically Linux folder hierarchy. In the host, we can observe
an important folder called ”filtered”, where we had carefully
created those symbolic links to the libraries that we will use
to do indirections. Turning into the container, there is an
important folder called /host/, which is no more than the
binding of the previously called host folders. Inside it, we
can observe the filtered folder, where now the symbolic links
points to existing files. Those symbolic links are represented
by discontinuous lines, while the bindings are represented
by the continuous ones. Explaining the Figure 4 in a more
structured way, this is what we do:

1) Bind the OpenMPI libraries and their dependencies
located at /usr and /lib64 (continuous lines).

2) Create directories with symbolic links to the selected
libraries. These links will be properly solved inside the
container (the ”filtered” folder).

3) Bind directories with symbolic links (discontinuous
lines).

4) Export LD_LIBRARY_PATH pre-pending the binded
Open MPI libraries, dependencies and directories with
symbolic links.

5

Fig. 4: Binding approach: graphic representation

D. Discussion

Mixing MPI versions (container and host) produces compat-
ibility issues and is no go for Open MPI less than 3.0.0. To
support MPI containers there are two options: Containers can
be built with all the needed library inside or they can bind the
library of the host, both options have pros and cons, and there
is no best option to recommend. The binding allow to create
smaller container in size, but the host’s library and their paths
have to be able to interface with the binary in the container, this
is called application binary interface (ABI) compatibility. The
ABI compatibility is not always possible and a specific binding
pattern reduce the general portability of the container on other
servers. Putting the library inside the container produce larger
container but also in that cases, putting hardware specific
library (OFED) can introduce compatibility issues when the
host hardware change. The performances of both approaches
are equivalent. However neither of them can be used as black
box, the knowledge of the container and host structure is
always needed. Here the pros and cons of each of the later
approaches are discussed.

1) Install the same OpenMPI version: Pros:
• Containers’ philosophy is not corrupted.
• We can ensure 100% ABI compatibility.
Cons:
• High system administrator iteration. The system admin-

istrator is responsible for installing every needed version
of Open MPI at the host, as well as installing and
configuring each new version that is released.

• We need to inspect every single container in order to
know which Open MPI version it has installed inside.
Once this is known, we need to deploy the exactly match
version at the host.

• Container must have installed some libraries in order to
use some HPC resources (libiverbs, ibutils, etc.)

2) MPI binding: Pros:
• Medium system administrator iteration. The system ad-

ministrator must install and configure at least one Open
MPI version per major version available.

• We can use the srun process manager as we are using
exactly the same PMI.

• High interoperability level.
• The container does not need to have installed specific

hardware related libraries.
Cons:
• Containers’ philosophy is corrupted. This do not damage

the containers and they can be employed under different
environments and hosts with no changes on them.

• In general, we can not ensure 100% ABI compatibility.
Reader can read the ABI tracker page if he wants to know
more.

• Similar as it happened with the previous approach, we
need to inspect every single container in order to know
which Open MPI major version it has installed inside.

• All containers must go through a bootstrap process to
make their environment suitable for our configuration
(create a series of folders, make links, etc.)

VI. USE CASES AND BENCHMARKING RESULTS AT
MARCONI@CINECA

In CINECA, a ”Install the same Open MPI version” ap-
proach was chosen, instead of ”MPI binding”.

1) System description: MARCONI [5] is the Tier-0
CINECA system based on Lenovo NeXtScale platform. The
current configuration of MARCONI consists of:

• 3600 Intel Knights Landing nodes, each equipped with 1
Intel Xeon Phi 7250 @1.4 GHz, with 68 cores each and
96 GB of RAM, also named as MARCONI A2 - KNL

• 3216 Intel SkyLake nodes, each equipped with 2 Intel
Xeon 8160 @ 2.1 GHz, with 24 cores each and 192 GB
of RAM, also named as MARCONI A3 - SKL.

This supercomputer takes advantage of the Intel Omni-Path
Architecture, which provides the level of high-performance
inter-connectivity required to efficiently scale out the system’s
thousands of servers. A high-performance Lenovo GSS storage
subsystem, that integrates the IBM Spectrum ScaleTM (GPFS)
file system, is connected to the Intel Omni-Path Fabric and
provides data storage capacity for about 10 PBytes net. MAR-
CONI A3, SkyLake node partitions, was used for testing. On
those nodes, the operating system is CentOS 7.3.1611. The
software is available through environment modules, and the
Singularity version used for testing is 3.0.1. A compatible Intel
OPA driver was installed in the containers. All runs have been
submitted to MARCONI A3 as Slurm jobs and all the nodes
have been used in exclusive way, without competition with
other runs.

2) Test case 1: containerized versus bare metal execution
using Intel MPI library and Intel OPA interconnection net-
work: A Singularity container has been built by installing Intel
MPI library and all necessary drivers for using the Intel OPA
interconnection network available in MARCONI. The version
of Quantum Espresso code used is 6.3, compiled with Intel
parallel studio 2018 - update 4. The container has been built
using Singularity 3.0.1 . As a test, a slab of Zirconium Silicide
material has been used, a mineral consisting of zirconium, and

6

silicon atoms. This slab consists of 108 atoms in total with a
K-point mesh of 6× 6× 5 .

On the basis of the performance suggestions available in
QE documentation [22], hybrid MPI+OpenMP jobs have been
submitted, because it has been demonstrated a performance
improvements respect to a pure MPI job when a large number
of nodes (>64) are used. During the compilation phase of
Quantum Espresso, Intel Scalapack library (part of Intel Math
Kernel Library (MKL) [23]) has been included, to maintain
performances for a large number of nodes. In the proposed
tests, the QE parameters were set to 8 OMP Threads, a
number of MPI tasks equal to the number of cores divided
by the number of OMP Threads, ”npool” parameter equal
to 16, and ”ndiag” parameter equal to the number of MPI
Tasks divided by the parameter ”npool”. Figure 5 shows a
comparison between the performance in terms of execution
time for bare metal vs container with increasing the number
of cores up to 6144 for the input provided (i.e. up to 128
MARCONI Sky Lake nodes). The total execution time is
reported for the entire code (PWSCF) and for the Fastest
Fourier Transform in the West (FFTW), which is one of
the most time-consuming codes. Each computation has been
repeated 10 times, and the displayed values in the figures
include: minimum, median, and maximum. The calculations
were repeated 5 times and then averaged on the set of data.
Figure 5 shows a negligible difference in the total execution
time of bare metal and container up to 6144 cores (128 nodes).

768 1536 3072 3072

500

1000

1500

2000

2500

3000

cores

Ti
m

e
(S

ec
on

ds
)

Bare metal PWSCF
Container PWSCF
Bare metal FFTW
Container FFTW

Fig. 5: Total execution time of the simulation (PWSCF) and Fastest Fourier
Transform in the West (FFTW) are plotted for a system of 108 zirconium and
silicon atoms running on 16, 32, 64 and 128 MARCONI Sky Lake nodes,
every node has 48 cores

3) Test case 2: containerized versus bare metal execution
using Open MPI and Intel MPI: In the second experiment
the performances of two different compilers has been consid-
ered, Intel MPI and Open MPI. In both cases, the Quantum
Espresso code is used, simulting a 24 Zirconium and Silicon
atoms, with a K-point mesh of 6 × 19 × 13, pure MPI.
A Singularity container with Open MPI library 2.1.1 and
Quantum Espresso version 6.4 has been built, together with
those already explained in Section VI-2. The Results are

shown in Figure 6. The total execution time is reported for the
entire code (PWSCF) and for the Fastest Fourier Transform
in the West (FFTW). Each computation has been repeated
10 times, and the displayed values in the figures include:
minimum, median, and maximum. The overhead introduced
by containerized execution compared to bare metal is negli-
gible. By comparing the performances of the two versions of
Quantum Espresso compiled with two different MPI libraries
Figure 6, it is noted that QE compiled with Intel MPI are about
5 times faster than compiled with Open MPI. This is expected
and is not affected by the containerization procedure. Our
goal performing these experiments was to test and prove the
negligible effect of containerization on the execution time of
for Quantum Espresso on MARCONI cluster both increasing
the number of nodes and changing the compiler. Moreover,
we were interested in testing that the scaling shape of QE
is similar when using containers, independently from the
compiler.

48 96 192

500

1000

1500

2000

2500

cores

Ti
m

e
(S

ec
on

ds
)

Bare metal PWSCF
Container PWSCF
Bare metal FFTW
Container FFTW

(a) Intel MPI

48 96 192

0.2

0.4

0.6

0.8

1

1.2

1.4

·104

cores

Ti
m

e
(S

ec
on

ds
)

Bare metal PWSCF
Container PWSCF
Bare metal FFTW
Container FFTW

(b) Open MPI

Fig. 6: Total execution time of PWSCF and Fastest Fourier Transform in the
West (FFTW) on a system of 24 zirconium and silicon atoms run on 1, 2, 4
MARCONI Sky Lake nodes, where every node has 48 cores

7

Fig. 7: STREAM best bandwidth rates comparison

VII. USE CASES AND BENCHMARKING RESULTS AT
FINISTERRAE II @ CESGA

Here we describe the use cases at FinisTerrae II.
The benchmarks were performed in order to demonstrate

that Singularity is able to take advantage of the HPC resources,
in particular Infiniband networks and RAM memory. For
these benchmarks we used a base Singularity image with an
Ubuntu 16.04 (Xenial) OS and several OpenMPI versions.
For these benchmarks we took into account the MPI cross-
version compatibility issue exposed in the previous section.
The STREAM benchmark is de facto industry standards for
measuring sustained RAM memory bandwidth and the cor-
responding computation rate for simple vector kernels. The
MPI version of STREAM is able to measure the employed
RAM under a multi node environment. The fact of using
several nodes with exactly the same configuration helps us
to check results consistency. In this case, two FinisTerrae II
nodes, 48 cores, were utilized for running 10 repetitions of this
benchmark natively and within a Singularity container with a
global array size of 7.6× 108, which is a big enough size to
not be cacheable.

As we can see in the above figure, obtained bandwidth
rates are really close between the native execution and the
execution performed from a Singularity container, differences
are negligible. Infiniband networks also have decisive impact
on parallel applications performance and we have also bench-
marked it from Singularity containers. We used the base Singu-
larity container with three different OpenMPI versions (1.10.2,
2.0.0 and 2.0.1) together with OSU micro-benchmarks. OSU
are suite of synthetic standard tests for Infiniband networks
developed by MVAPICH. In particular, among the bunch of
tests included we have performed those related with point-
to-point communications in order to get results about typical
properties like latency and bandwidth. Only two cores in
different nodes were used for this benchmark. Latency tests are
carried out in a ping-pong fashion. Many iterations of message
sending and receiving cycles were performed modifying the
size of the interchanged messages (window size) and the
OpenMPI version used.

We can see in Figure 8 and Figure 9, unidirectional
latency measurements are strongly related to the message
size. For window sizes up to 8192 bytes we obtain less
than 6 microseconds of latency, which are correct values
for Infiniband networks. In this case the OpenMPI version

Fig. 8: Latency from Singularity using OSU micro-benchmarks

Fig. 9: Bandwidth from Singularity using OSU micro-benchmarks

does not have influence on the results. For the measurement
of the bandwidth, we increase the windows size to saturate
the network interfaces in order to obtain the best sustained
bandwidth rates. In the figure below, we can observe that the
general behaviour is as expected. The maximum bandwidth
reached is close to 6GB/s, which are again in a correct
value ranges for Infiniband. Although getting slightly different
values depending on the OpenMPI version, we obtain similar
results with critical values. From these benchmark results,
we can conclude that Singularity containers running parallel
applications are taking advantage of these HPC resources
under the specified conditions.

Listing 1 presents one of two sbatch scripts responsible for
reserving resources in the cluster. Keep in mind that these must
adapt it according to the container name (right now depends on
a variable, but it did not tend to be so). We must also adapt the
number of processors, the maximum execution time, as well
as the queue under we want it to run (thinnodes, cola-corta,
software, etc.)

Listing 2 describes the template used to build the basic MPI
Singularity container.

VIII. RELATED WORK

There are numerous efforts in the direction of performance
benchmarking for container runtimes and containerised ap-
plications [24], [25], [26], [27], [28], [29], [30], [31], [32],
[33]. IBM research produced a report [24] comparing the

8

Listing 1: SBATCH script for reserving resources on the cluster
#!/ bin/sh

SBATCH -n 2
SBATCH -N 2
SBATCH -p thinnodes
SBATCH -t 00:10:30

if srun singularity exec \
-B /lib64:/host/lib64 \
-B /usr/lib64:/host/usr/lib64 \
-B $HOST_LIBS/lib64:/host/filtered/lib64 \
-B $HOST_LIBS/usr/lib64:/host/filtered/usr/lib64 \
-B /opt/cesga/openmpi/$OPEN_MPI_VERSION/$COMPILER/
$COMPILER_VERSION/lib:/. singularity .d/ libs \
-B $HOST_LIBS/mpi:/host/mpi \
-B /opt/cesga:/opt/cesga \
-B /usr/lib64/slurm:/usr/lib64/slurm \
-B /etc/slurm:/etc/slurm \
-B /var/run/munge:/run/munge \
-B /etc/libibverbs.d:/etc/libibverbs.d \
-B /mnt:/mnt \
ubuntu ." $CONTAINER_OPEN_MPI_VERSION ".img bash -c "
export LD_LIBRARY_PATH = $LIBS_PATH :\
$LD_LIBRARY_PATH ; program - name "

performance of a docker container and a KVM virtual ma-
chine by running benchmarks such as Linpack, Stream, Fio,
and Netperf. Ákos Kovács [25] compared different container
techniques (Docker [7], Singularity [13], and LXC [12]) with
KVM (Kernel-based Virtual Machine) virtualization and native
OS performance using Sysbench for CPU benchmarking and
IPerf tool for network benchmarking. Containers were almost
at the level of the native performance for CPU benchmarks
and close to native for network benchmarks. Á. Kovács et
al. [28] used Docker and singularity containers to benchmark
the throughput of a multi-path network library. Most common
Docker container and a HPC specific Singularity container
interconnected with twelve 100 Mbit/s links were used to
evaluate the aggregation capabilities of the combination of
these technologies. Saha et al. [33] presented a performance
evaluation of Docker and Singularity on bare metal nodes
in the Chameleon cloud in addition to a mechanism by
which Docker containers can be mapped with InfiniBand
hardware with RDMA communication. The performance anal-
ysis showed that scientific workloads for both Docker and
Singularity based containers can achieve near-native perfor-
mance. Diamanti published a container adoption benchmark
survey [34] listing performance as one of the key challenges
for running containers in production.
For the existing HPC container platforms: Singularity [10],
[13] has build-in support for MPI (OpenMPI, MPICH, In-
telMPI). Shifter [2] supports MPI depending on MPICH Ap-
plication Binary Interface (ABI). Charliecloud [8] uses Slurm
srun to run containers with MPI installed. To our knowledge,
there is no study that proposed different approaches/alterna-
tives for configuring/installing containers to work with MPI
applications using one container platform.

IX. CONCLUSION

Traditional software integration and deployment performed
in HPC systems is a time-consuming activity which relies on
manual installations performed by system administrators and
presents some issues which make it very inflexible. The main
issue of the selected containerization technology, Singularity,

Listing 2: MPI singularity container bootstrap template
BootStrap: docker
From: ubuntu:xenial
#BootStrap: debootstrap
#OSVersion: xenial
#MirrorURL: http://us.archive.ubuntu.com/ubuntu/

%setup
#######################
ACTIONS FROM HOST
use $SINGULARITY_ROOTFS to refer to container root (/)
#######################

%post
#######################
INSTALL SECTION
#######################

#------------------
REQUERIMENTS
#------------------

REQUERIMENTS="openmpi-bin \
openmpi-common \
libopenmpi-dev \
dapl2-utils \
libdapl-dev \
libdapl2 \
libibverbs1 \
librdmacm1 \
libcxgb3-1 \
libipathverbs1 \
libmlx4-1 \
libmlx5-1 \
libmthca1 \
libnes1 \
libpmi0 \
libpmi0-dev"

echo "Installing $REQUERIMENTS ..."
apt-get update
apt -y --allow-unauthenticated install $REQUERIMENTS

mkdir -p /mnt
mkdir -p /scratch

#------------------
USER INSTALL
#------------------

... Install here your software

#------------------
CLEAN APT files
#------------------
apt-get clean
rm -rf /var/lib/apt/lists/*
rm -rf /var/tmp/*

%runscript
#######################
RUN COMMAND SCRIPT
Singularity "run" command launch this script
#######################

echo "Arguments received: $*"
exec "$@"

relies on its integration with Open MPI. Different general
approaches for enabling MPI containers on HPC clusters were
proposed. We analyzed the use of CPU, RAM and network.
The obtained parameters were very close to those obtained by
the native execution of the same ones, reason why the loss
is despicable. In addition, if we consider the time that will
be saved using this novel form of software deployment, this
minimal loss is more than justified.

9

X. ACKNOWLEDGMENTS

This work has been supported and funded by the following
projects:

• PRACE (Partnership for Advanced Computing in Eu-
rope), which is funded in part by the EU’s Horizon 2020
Research and Innovation programme (2014-2020) under
grant agreement 730913.

• MSO4SC (Mathematical Modelling, Simulation and Op-
timization for Societal Challenges with Scientific Com-
puting) that has received funding from the EU’s Horizon
2020 research and innovation programme under grant
agreement 731063.

• HPC-Europe 3 project (Grant agreement 730897).

REFERENCES

[1] B. Grüning, J. Chilton, J. Köster, R. Dale, N. Soranzo, M. van den
Beek, J. Goecks, R. Backofen, A. Nekrutenko, and J. Taylor, “Practical
computational reproducibility in the life sciences,” Cell Systems, vol. 6,
no. 6, pp. 631 – 635, 2018.

[2] D. Jacobsen and S. Canon, “Contain this, unleashing docker for hpc,”
in Cray User Group 2015, April 23, 2015.

[3] “Partnership for advanced computing in europe,” http://www.prace-
project.eu, accessed: 2019-10-16.

[4] K. Hoste, J. Timmerman, A. Georges, and S. D. Weirdt, “EasyBuild:
Building software with ease,” in 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis. IEEE, Nov.
2012. [Online]. Available: https://doi.org/10.1109/sc.companion.2012.81

[5] “Marconi user documentation,” https://wiki.u-
gov.it/confluence/display/SCAIUS/UG3.1%3A+MARCONI+UserGuide,
accessed: 2019-10-16.

[6] “Finisterrae supercomputer,” https://www.cesga.es/en/infraestructuras/
computacion/FinisTerrae2, accessed: 2019-10-16.

[7] D. Merkel, “Docker: Lightweight linux containers for consistent
development and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2600239.2600241

[8] R. Priedhorsky and T. Randles, “Charliecloud: unprivileged containers
for user-defined software stacks in hpc,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis on - SC 17. ACM Press, 2017. [Online].
Available: https://doi.org/10.1145/3126908.3126925

[9] “Library and tool for running oci-based containers in pods,”
https://github.com/containers/libpod, accessed: 2019-10-16.

[10] G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity:
Scientific containers for mobility of compute,” PLOS ONE,
vol. 12, no. 5, p. e0177459, May 2017. [Online]. Available:
https://doi.org/10.1371/journal.pone.0177459

[11] J. Gomes, E. Bagnaschi, I. Campos, M. David, L. Alves, J. Martins,
J. Pina, A. López-Garcı́a, and P. Orviz, “Enabling rootless linux con-
tainers in multi-user environments: The udocker tool,” Computer Physics
Communications, vol. 232, pp. 84 – 97, 2018.

[12] “Lxc - linux containers,” linuxcontainers.org/lxc, accessed: 2016-05-21.
[13] G. M. Kurtzer, “Singularity 2.1.2 - Linux application and

environment containers for science,” Aug. 2016. [Online]. Available:
https://doi.org/10.5281/zenodo.60736

[14] “Quantum espresso,” https://www.quantum-espresso.org/, accessed:
2019-10-16.

[15] “Openmpi,” https://www.open-mpi.org/, accessed: 2019-04-01.
[16] “Intel mpi,” https://software.intel.com/en-us/mpi-library, accessed: 2019-

10-01.
[17] “Singularity admin guide for mpi,”

https://www.sylabs.io/guides/2.6/Admin-guide.pdf%20, accessed:
2018-12-16.

[18] “How does pmix work with containers?”
https://pmix.org/support/faq/how-does-pmix-work-with-containers/,
accessed: 2019-10-01.

[19] “Building containers for intel omni-path
fabrics using docker* and singularity*,”
https://www.intel.com/content/dam/support/us/en/documents/network-
and-i-o/fabric-products/
Build Containers for Intel OPA AN J57474 v4 0.pdf, accessed:
2019-10-16.

[20] Abdulrahman Azab and Vı́ctor Sande Veiga, “Mathematical, modeling
and optimization for socital challenges with scientific computing -
singularity use case,” URL: https://docs.google.com/presentation/d/
1Hi3tp0cVMwYaAy6rXgDlHejuuiX7s6hcyj2kW19vA7o, 12 2017.

[21] “Open mpi api/abi changes review - abi tracker project,” https://abi-
laboratory.pro/tracker/ timeline/openmpi/, accessed: 2019-10-16.

[22] “Quantum espresso benchmark,” https://github.com/electronic-
structure/benchmarks, accessed: 2019-10-16.

[23] “Intel math kernel library,” https://software.intel.com/en-us/mkl, ac-
cessed: 2019-10-16.

[24] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An updated
performance comparison of virtual machines and linux containers,”
in 2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, Mar. 2015. [Online]. Available:
https://doi.org/10.1109/ispass.2015.7095802

[25] A. Kovacs, “Comparison of different linux containers,” in
2017 40th International Conference on Telecommunications and
Signal Processing (TSP). IEEE, Jul. 2017. [Online]. Available:
https://doi.org/10.1109/tsp.2017.8075934

[26] M. Newlin, K. Smathers, and M. E. DeYoung, “ARC containers for
AI workloads,” in Proceedings of the Practice and Experience
in Advanced Research Computing on Rise of the Machines
(learning) - PEARC 19. ACM Press, 2019. [Online]. Available:
https://doi.org/10.1145/3332186.3333048

[27] Y. Wang, R. T. Evans, and L. Huang, “Performant container
support for HPC applications,” in Proceedings of the Practice and
Experience in Advanced Research Computing on Rise of the Machines
(learning) - PEARC 19. ACM Press, 2019. [Online]. Available:
https://doi.org/10.1145/3332186.3332226

[28] A. Kovacs and G. Lencse, “Evaluation of layer 3 multipath solutions
using container technologies,” in 2019 42nd International Conference
on Telecommunications and Signal Processing (TSP). IEEE, Jul. 2019.
[Online]. Available: https://doi.org/10.1109/tsp.2019.8768820

[29] C. Pahl, “Containerization and the PaaS cloud,” IEEE Cloud
Computing, vol. 2, no. 3, pp. 24–31, May 2015. [Online]. Available:
https://doi.org/10.1109/mcc.2015.51

[30] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based operating system virtualization,” ACM SIGOPS
Operating Systems Review, vol. 41, no. 3, p. 275, Jun. 2007. [Online].
Available: https://doi.org/10.1145/1272998.1273025

[31] M. G. Xavier, M. V. Neves, and C. A. F. D. Rose, “A performance
comparison of container-based virtualization systems for MapReduce
clusters,” in 2014 22nd Euromicro International Conference on
Parallel, Distributed, and Network-Based Processing. IEEE, Feb.
2014. [Online]. Available: https://doi.org/10.1109/pdp.2014.78

[32] J. Bhimani, Z. Yang, M. Leeser, and N. Mi, “Accelerating
big data applications using lightweight virtualization framework
on enterprise cloud,” in 2017 IEEE High Performance Extreme
Computing Conference (HPEC). IEEE, Sep. 2017. [Online]. Available:
https://doi.org/10.1109/hpec.2017.8091086

[33] P. Saha, A. Beltre, P. Uminski, and M. Govindaraju, “Evaluation
of docker containers for scientific workloads in the cloud,” in
Proceedings of the Practice and Experience on Advanced Research
Computing - PEARC 18. ACM Press, 2018. [Online]. Available:
https://doi.org/10.1145/3219104.3229280

[34] “2019 container adoption benchmark survey,” https://diamanti.com/wp-
content/uploads/2019/06/
Diamanti 2019 Container Survey.pdf, accessed: 2019-10-16.

10

